Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection
نویسنده
چکیده
A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of smallscale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.
منابع مشابه
Bifurcations in turbulent rotating Rayleigh-Bénard convection: A finite-size effect
In turbulent rotating Rayleigh-Bénard convection Ekman vortices extract hot or cold fluid from thermal boundary layers near the bottom or top plate and enhance the Nusselt number. It is known from experiments and direct numerical simulation on cylindrical samples with aspect ratio Γ ≡ D/L (D is the diameter and L the height) that the enhancement occurs only above a bifurcation point at a critic...
متن کاملBuoyancy statistics in moist turbulent Rayleigh–Bénard convection
We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayl...
متن کاملHeat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio
We report on the influence of rotation about a vertical axis on heat transport by turbulent Rayleigh–Bénard convection in a cylindrical vessel with an aspect ratio Γ ≡ D/L = 0.50 (D is the diameter and L the height of the sample) and compare the results with those for larger Γ . The working fluid was water at Tm = 40 ◦C where the Prandtl number Pr is 4.38. For rotation rates Ω . 1 rad s−1, corr...
متن کاملRayleigh-Bénard Simulation using Gas-kinetic BGK Scheme in the Incompressible Limit
In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Bénard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr = 1 in the ori...
متن کاملNumerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006